
MATHEMATICS OF COMPUTATION 
VOLUME 54, NUMBER 189 
JANUARY 1990, PAGES 169-187 

BIVARIATE C1 QUADRATIC FINITE ELEMENTS 
AND VERTEX SPLINES 

CHARLES K. CHUI AND TIAN-XIAO HE 

ABSTRACT. Following work of Heindl and of Powell and Sabin, each triangle of 
an arbitrary (regular) triangulation A of a polygonal region Q in JR2 is subdi- 
vided into twelve triangles, using the three medians, yielding the refinement A 
of A, so that C quadratic finite elements can be constructed. In this paper, 
we derive the Bezier nets of these elements in terms of the parameters that de- 
scribe function and first partial derivative values at the vertices and values of the 
normal derivatives at the midpoints of the edges of A. Consequently, bivariate 
CI quadratic (generalized) vertex splines on A have an explicit formulation. 
Here, a generalized vertex spline is one which is a piecewise polynomial on the 
refined grid partition A and has support that contains at most one vertex of the 
original partition A in its interior. The collection of all C' quadratic general- 
ized vertex splines on A so constructed is shown to form a basis of SI (A), the 
vector space of all functions on C' (Q) whose restrictions to each triangular cell 
of the partition A are quadratic polynomials. A subspace with the basis given 
by appropriately chosen generalized vertex splines with exactly one vertex of A 
in the interior of their supports, that reproduces all quadratic polynomials, is 
identified, and hence, has approximation order three. Quasi-interpolation for- 
mulas using this subspace are obtained. In addition, a constructive procedure 
that yields a locally supported basis of yet another subspace with dimension 
given by the number of vertices of A, that has approximation order three, is 
given. 

1. INTRODUCTION 

Let Q be a simply connected region in JR2 whose boundary 00 is a simple 
closed polygonal Jordan curve. Also, let A be a (regular) triangulation of Q, 
and by this, we mean that the complement of A relative to Q consists of a 
finite number of triangles such that none of the vertices of any triangle lies on 
the edge of another triangle. For -1 < r < d, where r and d are integers, 
Sd(A) will denote the vector space of all functions in Cr(Q) whose restrictions 
on each triangular region of the partition A are polynomials of total degree at 
most d. The space S (A) is called a bivariate spline space. We are interested 
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in functions belonging to Sd (A) with smallest supports. If d is allowed to be 
fairly large as compared with r, then a basis of Sd (A) consisting of functions 
whose supports contain at most one vertex of A in the interior can be con- 
structed. Such basis elements are called vertex splines and were introduced by 
Chui and Lai [3]. For instance, for r = 1, d must be at least 4 (cf. [1, 3]). 
Since lower-degree piecewise polynomials are more desirable from the practical 
point of view, such as computational efficiency and capability in the control of 
geometric characteristics, we consider construction of macroelements by refin- 
ing the grid partition A. For r = 1, if we wish to use the smallest degree d, 
which is 2, we may subdivide each triangle into 12 triangles by using the three 
medians as shown in Figure 1 (cf. Heindl [7] and Powell and Sabin [9]). The 
refinement of A so obtained will be denoted by A. We will now consider the 
spline space S' (A). A function in S2 (A) whose support contains at most one 
vertex of the original partition A in its interior will be called a generalized vertex 
spline. In Figures 2(a) to 2(d), we demonstrate the supports of all possible gen- 
eralized vertex splines, where the dotted lines denote the refinement of A that 
defines A. 

V V23 

FIGURE 1 

/ < / / /boundaryofQ 

FIGURE 2(a) FIGURE 2(b) 

We will first give an explicit formulation of all generalized vertex splines in 
S2 (A) by displaying the Bezier nets of the polynomial pieces and show that they 
form a basis of S' (A-) . Then we will derive a necessary and sufficient condition 
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boundary of Q 

FIGURE 2 (c) FIGURE 2 (d) 

on the generalized vertex spline basis of a subspace S2 A/) of S2 (/\), obtained 
by deleting basis elements of S2 /\ that have supports given by Figures 2(c) 

A n 

and 2(d), so that S2 (/\) still contains r2 , the space of all quadratic polynomials 
in two variables. Consequently, the approximation order of S2 (/\) remains 3. 
An important advantage of the subspace S ((A) over the whole space S2 (A) is 
that it is easier to construct a quasi-interpolation formula, which requires only 
function values at the vertices of the original triangulation A, if the generalized 
vertex splines with supports given by Figures 2(c) and 2(d) are not being used. 
This topic will also be studied in this paper. Finally, we study a constructive 
procedure to determine yet another subspace of dimension given by the number 
of vertices of A, that still maintains third-order approximation. 

2. CONSTRUCTION OF MACROELEMENTS 

We will first study the construction of a so-called C' quadratic macroele- 
ment. Let T be a triangular region with vertices V = (a,, b,), i = 1, 2, 3. 
We are interested in constructing a C1 piecewise quadratic polynomial on T 
with "boundary values" so chosen that when another macroelement on an ad- 
jacent triangle sharing a common edge with T is constructed with the same 
boundary conditions on this common edge, a Cl function on the union of 
these two triangles is obtained. We will give the Bezier net of each polyno- 
mial piece of the macroelement. Following Powell and Sabin [9] and Heindl 
[7], we divide T into twelve triangles as shown in Figure 1, using the medi- 
ans VIV23, V2V3 ,and V3V2, as well as the line segments V 2V23I V23 V3,and 
V31 VI2, where 

(2.1) VI2= 2(VI + V2)' V23 12( 2 Y+ V3), V31 = 2(V3+ VI. 

We will use the parameters d,, d2, d3, imn, iM2, iM3, n, , n2, n3, and p,, P2, 
p3, where for i = 1, 2, 3, d, denotes the function value at VJ, ml andnde- 
note values of the first partial derivatives with respect to x and y, respectively, 
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at Vi, and 

P1 = Dk f(JV2), 

(2.2) p2 = Dk2f(V23), 

P3 = Dk f(V3l), 

with kI = (bi-b2, a2-a,), k2 =(b2-b3, a3-a2), and k3 =(b3-bl, a,-a3). 
Here and throughout, for any vector k = (k1, k2), Dkf denotes the derivative 
of f with respect to k defined by 

Dkf = k * Vf = ki 
Of 

+ k2 Of 
O0x ay' 

Hence, p1, P2, and p3 are "normal derivatives" at the midpoints of the edges 

VIV2, V2V3, and V3JVI of T, respectively. 
Since Bezier nets will be determined, we must use the barycentric coordinates 

relative to each of the twelve subtriangles. Let T1 and T2 be two of these twelve 
triangles adjacent to each other, as shown in Figure 3, where we have used X1, 
X2, X3, and X4 to denote the vertices. The barycentric coordinates relative 
to T1 and T2 will be denoted by (u, v, w) and (ue, iv, ), respectively; that 

is, for each X = (x, y) in R12, we have 

X= uX1 + vX2 + WX3 = "XI + iX4 + tbX2 

where u , vw, uW , i1, and wb are linearpolynomials in (x, y), withu+v + 
w = iu + v + wb = 1. For any two quadratic polynomials p and q defined on 
T1 and T2, respectively, we may write 

(2.3) p(u, v, w) = aijk 2!j VW 
i+j+k=2 

and 

(2.4) q(a, v wi7) = S biJki!j!k! VJW 
i+j+k=2 

Then {aiJk} and {bijk} are called the Bezier nets of p and q on the tri- 
angles T1 and T2, respectively. These coefficient values can be displayed on 
the corresponding triangles as shown in Figure 3, and define the corresponding 
polynomials uniquely. Let f be a function whose restrictions on T1 and T2 
are p and q, respectively. The following smoothness condition on f will be 
useful in constructing the macroelement (cf. Farin [5]). 

Lemma 2.1. The function f is in C' (T, U T2) if and only if 

b200 = a200 , bol0 = a1 10 b oo2 =a020, 

bl 1 0a + V a + W 0a u110U a200+ a110+ a101,5 

and 

boll = u0 +V aO w0a Oil a110? a020? ail , 
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FIGURE 3 

where (u0, v0, w0) is the barycentric coordinate of X4 relative to the triangle 
T1, in the sense that 

X4 = u0X1 + v0X2 + w0X3 . 

Let us now apply this lemma to construct piecewise polynomial functions on 
the triangle T with vertices Jj, Ja , Jr as shown in Figure 1. At one of the 
six corner triangles where VJ, JV2 or V3 is one of the vertices, we will utilize 
the parameters di, mi, ni, i = 1,2, 3. Let X1 denote VJ, /V2, or V3, and 
X2, X3, X4 the other appropriate vertices VI , V23, V3, as shown in one of 
the three situations in Figure 4. Then the following result, which will be useful 
for our construction procedure and can be easily verified, relates the Bezier net 
to values of the function and its derivatives. 

X3 = V31 x2 X4= V12 X3 = V12 X2 X4 = V23 x3 = V23 X2 X4 = V31 

T1 T1 T 

XI= VI XI =_V2 XIl = V3 

FIGURE 4 

Lemma 2.2. Let {aijk }, i + j + k = 2, be the Bezier net of the quadratic poly- 
nomial p(u, v, w) in (2.3) on triangle T1 as shown in Figures 3 and 4. Then 
a200 = P(X1), 

a110 = P(Xl) + ID 

and 

a101 = P(X1) + 1Dx ,p(X1). 



174 C. K. CHUI AND T.-X. HE 

Let us now return to the given triangular region T which is subdivided into 
twelve triangles as shown in Figure 1. Since the triangulation is a crosscut par- 
tition with six crosscuts and four interior vertices, it follows that the dimension 
of this bivariate C' piecewise quadratic spline space is 

(2+2) +6((2)+ 1)+O= 12, 

since for r = 1 and d = 2 the contribution from each of the four vertices is 
zero (cf. Chui and Wang [4]). This fact has already been observed in Powell 
and Sabin [9], where it is also shown that the twelve parameters di, min, ni, 
and pi, i = 1, 2, 3, indeed determine the space uniquely. Hence, we may now 
proceed to construct the Bezier nets of our macroelement f on T in terms of 
these parameters. 

An advantage in using the medians to triangulate T is that the point X2 
in each of the three situations in Figure 4 is the midpoint of the line segment 
X3X4, Iso that the barycentric coordinate (u0, v0, w0) of X4 relative to the 
triangle T, in Lemma 2.1 is given by 

(2.5) (u0 v w? = (O. 2, -1). 
Hence, the Bezier nets of the three pairs of corner subtriangles in Figure 4, as 
well as those of the corresponding three pairs of inner triangles, can be somewhat 
simplified. In fact, it is clear that they can be expressed in the form shown in 
Figure 5. The objective of this section is to express all the Bezier nets, shown 
in Figure 5, of the Cl piecewise quadratic macroelement f in terms of the 
twelve parameters: 

(2.6) di = f(V), ml= j f(J/), n,= f(V) 

and pi as defined in (2.2), where i = 1, 2, 3. First, let the Bezier nets of the 
twelve polynomials be expressed in terms of the parameters aoj, )18J ylj, and 

y~j, where Lemma 2.1 has been used to relate some of them. The others will 
be expressed in terms of di, mi, ni, and p1. 

It is clear that ,uii = di for i = 1, 2, 3. By applying Lemma 2.2 to the corner 
triangles, we may also express the yij values in terms of d1, d2, d3, iMn, iM2, 

m3, n1, n2, n3. In order to apply Lemma 2.2 to the inner triangles, we must 
first derive function values and values of the first partial derivates at VJ2, 2V23, 
and V3 , which are vertices of the inner triangles. We have the following result. 
Lemma 2.3. For i, j = 1, 2, 3, 

di + d 1 
(2.7) + ? [(m1 - m -)(a ai) + (n - nJ)b - b.)] 1J 2 ? 1[m mJ)(a j bi) 

and 

f = mI - - 1 4 2(1 -a2) - 4 f? l b2), 

(2.8) D -,2'f(V23) = (d2 -c)- -2 ? 3(a2-a3)- ' n3(b2- b3) 

I D, 3f(V31) = (d3 - d) - 3 ml 
(a3 -a) - n3 

+ 
1 (b3 -bi). 
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V1 

1111 

712/ 2(712 +713) 713 

I12 

2(a12 

/ 
+ a13) 

Cf I3 

-131 

a2 1a3 

/312 132 ? 83 I" 
3 812 1 2; /331 

/21 21\ (12+/23+1 /3\ 

721 <3(a2l + a23 3 23 + a32) 7 

/ (721 + 723) a23\ 2a32 (731 + 732) 

V2 /22 723 [123 732 /13 3 

FIGURE 5 

Proof. Since the restriction of f to each of the three edges of the original 
triangle T is a univariate quadratic spline, the function and derivative values 
of this spline function at the knot Vij can be easily expressed in terms of its 
function and derivative values at the two adjacent knots Vi and V.. This gives 
(2.7) and (2.8), respectively. U 

In order to be able to apply Lemma 2.2 to the inner triangles, we need the 
partial derivatives of f with respect to x and y at Vij. These values can be 
obtained by solving the linear systems 

(2.9) 
(al - a2) OOyf(V12) + (b, - b2) OOYf(V12) = 2D 

V,-V,2f(VI2)1 

( (bi - b2)OX f(JV2) - (a -a2)9 0Yf(V12) =PI, 

(2.10) 
{ (a2 -a3) 0Xf(V23) + (b2- b3) aY f(V23) = 2DV2-V23f(V23), 

((b22-.3)A0) V23)-(a2- a3) ayf(V23)=pP2 

and 

(a3-a,) t3 f(V31 )+(b - bl) 
11 

f(V31 =-2Df() 
(2.1~ ~ ~ 1) ox1at 3 3 ay V3 

- Y3-31f 31 Z 
( (b3- bl) f(V31 ) - (a3 - a,) f(Vj 1 )=p3, 

where the values on the right of the first equations of the linear systems are 
given by (2.8) in Lemma 2.3, and the second equations of the linear systems 
are simply (2.2). Hence, by using the values of f(J/1) = pj given by (2.7) and 
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the values of 0 f(Vij) and I f(J?j) which can be obtained by solving (2.9)- 
(2.1 1), we may apply Lemma 2.2 to derive the values of aij and 8ij shown in 
Figure 5. We summarize these results in the following theorem. 

Theorem 2.1. Let T be a triangular region with vertices Vj = (a1, b1), V2= 
(a2, b2), and V3 = (a3, b3), and let f e C' (T) whose restrictions to the twelve 
triangles shown in Figure 1 are bivariate quadratic polynomials. Then the Bezier 
nets of these polynomials, shown in Figure 5 and uniquely determined by the 
parameters d., m., n., and p1, i = 1, 2, 3, defined by (2.6) and (2.2), are 
given by 

d +d?d 1 - - d 
.2 ? + U4(ml 

- mj)(aj - ad) + (ni - nj)(bj - bi)], 

Y=j d?+ _[mi(a -a.)+ n (b1-b)], 

c.= " [(ak - a_) fj)+(bk -bj)-(yf], 

and 

l. = ?i + 24 [(ak - a ; a) 2 fay, 
? (bk - ) 1yfi)] 

where i, j = 1, 2, 3, k is the complement of {i, j} relative to {1, 2, 3} 
whenever i :$ j, and the first partial derivatives off at V are determined by 
(2.9)-(2.1 1) with Do - f(V ) given by (2.8). 

3. GENERALIZED VERTEX SPLINES 

Let Q be a bounded simply connected polygonal region in JR2 and A a 
regular but otherwise arbitrary triangulation of Q. We denote the vertices and 
edges of A by VI = (al, bl), * V , = (a., be) and e1, ... , e,, respectively, 
where both interior and boundary vertices and edges are enumerated. (See 
Figure 6 where q = 15 and 4 = 31 .) 

Subdivide each triangle in A into twelve triangles by using the midpoints of 
the edges e1, ... , e, as shown in Figure 1, yielding a triangulation A which 
is a refinement of the partition A of Q. (See Figure 7.) We are interested in 
studying the bivariate C1 quadratic spline space Sl (A-) of functions in C 1 (Q) 
whose restrictions to each triangular subregion with respect to the triangulation 
A are functions 7r, the collection of bivariate polynomials of total degree at 
most 2. For each j=1,, . , let W denote the midpoint of the edge ej of J 
the original triangulation A. Consider an arbitrary spline function f in SW (A). 
Let P denote the "normal derivative" of f at W in a direction normal to 
ej . For consistency, we may pick the direction to be 

(3.1) kJ = (bp - bq a - ap) 
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FIGURE 6. Triangulation Av 

with p < q, where Vp - (a,b') and V =-(a', b'j) are the endpoints of the 
edge e1. In addition, let 

di=f(Vi), m1=-b}f(Jj), n dfr) 

i1= 1, ..., ,1. Since the values d1, in1, and n1, i = 1 ,...,ti, and , 
j = 1, ... , g, uniquely determine f on each triangle of the partition A of Q, 
and hence on all of Q, it follows that the dimension of the spline space S2 (A) 
iS 

(3.2) dimS2(A) =31 l 

In fact, a basis 

(3.3) {S1, I' Ul EJ:yi=l 1,...l, j= 1,., g} 
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of S2 (A) is obtained by defining 

I (S() VSi (Vk) I 0y Si (Vk) (aik' ?' ?)' i,~ k =I,..,a 

Dk Si(w ) = ?1 i = 1, . . ., and j = 1, . . ., 5 

f (Ts(V, (VS(J/ ), 1 SVk (Vk)) = (? k' 0 ), i, k = 1, ..., 

Dk T(W-) =O i= 1,.. and j= I,..Q 

(3.6) 
| Ui (k)' IAUi (Vk) 00 ,Ui(Vk)) (?, ?, 6ik) ik=1 

D Dk U,(W ) = O. i=1...,q and j= 1, . . ., 5 

and 

f Ej(Vk), 
a 

Ej (Vk) , yEJ(Vk)) (?, I?, 0), k=i. 

(3.7) and j = 1,, 

Dj~y(W,) = (5jj, j5 1, .,4 

Here, aik is the Kronecker delta and ki is defined in (3.1). It is clear that the 
collection (3.3) is a linearly independent set in Sl (A). Hence, by (3.2), it is a 
basis of Sl (A). 

Another important observation is that the functions in (3.3) have "smallest" 
supports in the sense that each EJ has minimal support, and if f E S2 (A) has 
support properly contained in supp Si, supp T., or supp U1, then f must be 
in the span of {EJ: j = 1, ..., tC}. Note that if Vi is an interior vertex of 
A, then supp S, supp T,, and supp Ui are given by Figure 2(a), where Vi is 
the vertex interior to this support, and if Vi is a boundary vertex of A, then 
supp Si, supp Tf, and supp Ui are given by Figure 2(b). Similarly, if ej is an 
interior edge of A, then supp EJ is shown in Figure 2(c) with ej being the edge 
interior to this support, and if ej is a boundary edge of A, then supp Ej is 
shown in Figure 2(d). Since these supports, considered as supports of splines in 
Sd (A), where A is the original triangulation, are supports of the vertex splines 
in Sdr(A) (cf. Chui and Lai [31), we will call Si, To, U1, Ej generalized vertex 
splines. Hence, we have obtained the following result. 

Proposition 3.1. Let A be an arbitrary (regular) triangulation with q vertices 
and 4 edges, where both interior and boundary vertices and edges are counted, 
and let A be the refinement of A by subdividing each triangle of A into twelve 
triangles using the midpoints of the edges of A as shown in Figure 1. Then the 
bivariate spline space Sl (A) has dimension 3 q + and a basis of S2 (A) is given 
by the collection (3.3) of generalized vertex splines. 

In applications, however, the values of the "normal derivatives" at the mid- 
points W of the edges e1, j=l,..., I , are unknown quantities. Hence, the i 
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generalized vertex splines E1 , ... , E, seem to be useless. In order to take full 
advantage of these functions, we incorporate them with the other basis func- 
tions Si, T., and U . For each i = I let e, le' be all the edges 

ej with J as the common vertex, ordered in the counterclockwise direction 

around VJ. Let Ej, ...,El be the corresponding generalized vertex splines 
among the collection {j?Ej}, where the positive sign is chosen if the normal 
kj points in the counterclockwise direction around Vi and the negative sign is 

chosen otherwise. For any n,-tuples c' = (al, ..., an ) ft = (t1 f.,) 
and y' = (1 . n in R nset 

n,~~~~i 
S~x Si + al~ LE,, 

(3.8) T= Tz + 711Il ;E, 

UY U U + E= l yi 

and consider the subspace S2 (A; a', I8I, Y ) with basis 

(3.9) Is, T,, Ups : i = 1I .,a 

In what follows, we will characterize the values of a', fl', y' so that the sub- 
I 1 11 2 space S2 (A; a, 3', y ) contains 72 I the collection of all quadratic polynomials 

sae2 
-or2' in IR .This subspace has the important property that it has the same third-order 

approximation as the entire space Sl (A-). To facilitate the discussion, we need 
the following notation. 

Let V,1 = (a', bl) denote the other endpoint of the edge el = 1,..., n, 
and i = 1,..., a. Consider &a = (a'f, ... ,n), / = (SK, . n,), and 

Y= (Y , ...1 , 
Yn ),where, for I =1,..., ni, 

(3.10) '- == (b b (a - a1 . 

Here, Iel denotes the length of the edge e/ . Now, following the suggestion of 
Heindl [7] and Powell and Sabin [9], we set 

rS =Si + E1=EI =l Si 
(3.11) T = El I fl/El 

1.Ui = U1+z7;- E;. 

An example of these functions can be found in our report [2]. Let S2 (A) 
S2(;& A , Yl, y') be the subspace with basis {S* T,*, u: i = 1, ..., I 
The main result in this section is that this is the "unique" subspace that contains 

2 all of 7T2. 

Theorem 3.1. We have 7r2 C S2(A; a', IilI y) if and only if S(A; al', /,y')= 

S2 (A), or equivalently a' = &', /3 = /3, and y' =Y 
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Proof. (i) Necessity. Assume that 72 C S2 (A) . Then by (3.4), (3.5), (3.6), and 
(3.8), we have, for any P E it2, 

P = P( Vi)Si + E X( Vi) Ti + E P( Vi) Ui 
i Ii 

(3.12) nIOP(J/) 

( 3. 1 2) + E a i)+ ,li <P( VI) + Yli ((Vi )] E'i 

Set W/ = (VJ + VJ/)/2,and k = (bi - b1, a - a1)/je'. Then it follows from 
(3.4)-(3.7) and (3.12) that 

Dk p(WI,) = cel[p(J) +p(V)] + /,i [P(J/) + P (VI)] 

(3.13)~~~ +Yl [0 (I) + - (VI')] 

On the other hand, it is clear that 

Dkp(W'I) = [ k' (Vi) k1P(VIi) 

1 a(p Op i\ I 
(3.14) 2 V) [(O(i + V(I)) (bi - I 

+ (P (V) + ap (V,)) (a' -a,)le"I 

Hence, by using (3.10), we have 

+ (Yl yl) [a(Vi) + ayVI )]= 

for all I = 1,..., n, and i = 1, ...,q. By choosing p(x, y) = 1, x, y, 
consecutively, we obtain a = a, f,/ = /1 and 4 l 

(ii) Sufficiency. Consider the "Hermite operator" H from C1 (Q) to S2(A) 
defined by 

(3.15) H(f) := S [()S + a V) T + af ( Vi) Ui*] 

From (3.1 1), we have 

H(ft ) = f(V,)Si + Ofx( f+ (V)U. H(f).16)L~ Ox V)I~T 1+ot(JQ~i ay 

(3.16) __ O 
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It is sufficient to prove that H(p) = p for all p E 72. To do so, we may apply 
Proposition 3.1 and the Hermite properties (3.4)-(3.7) to write 

(3.17) P {P(V )Si+j + (VI)T+ +Z()Ui +Dkp(W )Ej, ax ay 
j~~~~~=1 

where the normal vectors kj are defined in (3.1). For each edge ej of the 
original partition A, we denote its endpoints by the vertices 

Vi = (ai, b,) and Vi= (all bi 
or by the vertices 

Vt = (at, bt) and 1m = (am bm) 

where V = V' and V, = /I . Hence, the normal vector to the edge ej is either 

kj =k =-km or k =-k = k. 

Without loss of generality, we assume that k = i = -km, where 

(3.18) k = (b, -b1, a- a)e 

and 

(3.19) -kt = (bt - bt, at-am)/jem I 

with Iei = let= I e9. Hence, 

(3.20) Ej = E =-E . 

Since kj = (k,-kt)/2 and OP(x, y) and P (x, y) are both linear polynomials, 
so that their values at Wj = WI = Wf are the averages at the two endpoints 
Vi =VAt and =Vi, we have, by using (3.10), (3.18.), (3.19), and (3.20), 

ml 
a 

t I 

DkP(WJ)E. = 1{DkP(w )-Dk p(Wt)}Ej 

= 2 {fi; [0x(Vi) + OP(VI,)] + [O [(V+) + (Vi)] 

= -ax10 (ax+y /(V E/+ {Am0 a(J/D+Ymy (VI DJEm 

Hence, by putting this quantity into (3.17), we have 
p = E {pf V )S + -P( Vi) Ti +( t) (EV) 

+ Ej [3 a x ( ViD) + ? m - (Vi )] El } - 

or, by (3.16), H(p) =qp for all p E 127. w 
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We remark that since the Hermite operator H defined in (3.15) preserves 
all quadratic polynomials, its approximation order is full. More precisely, let 
H~ (Q) denote the Sobolev space with norm 

/ 2'\ ~~~1/2 

lfIrQ =(E 'Daf 112) 
2al<r 

where 1l 112 is the L2 norm on Q and 

OalOal aX' ax 2 

a = (a1, a2). Also, denote by a = JAI the maximum of the diameters of the 
triangles in A. Then we have the following result (cf. [8]). 

Theorem 3.2. There exists a positive constant C such that 

JJHf- fi II < C6;3-rlf3 ~frQ ?C( Ir 1f13, r 

for all fH3 (Q) and r=O,...,3. 

For r = 0, we can even apply the Sobolev Imbedding Theorem to obtain the 
following inequality: 

(3.21) HJHf-f Jo < C( HfH3Q 

for all f E H(Q), where the L00 norm on Q is used. 

4. QUASI-INTERPOLATION BY GENERALIZED VERTEX SPLINES 

We are now ready to study the construction of approximation formulas by 

using generalized vertex splines in S (A-) so that the optimal order of approx- 

imation 0(6 3) is attained. Since only function values at the vertices of the 
original grid partition A will be used, the location of these vertices plays an 
important role in the construction scheme. For simplicity, we will assume the 
existence of a positive constant c such that the c(5-neighborhood 

{xeR2: X-VI<C(5} 

of each J" contains at least five other vertices, say VJ', ..., Vi', of A such that 
these six vertices (including VK itself) do not lie on a quadratic algebraic curve. 
Here, of course, the union of two straight lines is considered to be such a curve. 
Hence, there is a unique polynomial 

(4.1) p2(xy)= ax2 +2bxy+cy2+2dx+2ey+g 

that interpolates any function f at these six points. In other words, the linear 
system 
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has a unique solution. In order to obtain a quasi-interpolation formula that 
involves only function values, we must express the derivatives 

Z1 :=P2 (Vi) and Z2:=00P2(J/) 

in terms of the values in (4.2). From (4.2) we can obtain the following system 
of equations with unknowns Z', Z' i a, b and c: 1' 2' bad : 

(4.3) 
Zl-(al -a)+ Z(b -bi) + a(a - a)2 + 2b(al - al)(bl - bi) + c(bl -bi) 

= f (VI,) -fV I l=1,...,5. 

Hence, by using Cramer's Formula, we have 

(4.4) 
[ f(V11) - f(VJ) (bl - b,) (a' - a)2 2(a' - a,)(bl - b,) (bl - bl) 

l =det (f 2- ( ) b- 
b,) (a2 -a,) 2(a - a,)(1 - b,) (b2-,2/ 

LJ( v5') - f (JV,) ( b5 - b, ) (aS - aZ)2 2 (aS - a, )(bh5 - b, ) ( b5 ,) 

(4.5) 

22 

[a -a, f( V) - f ( V, ) (a' - a,) 2(a' - a,)(bl - b,) (bl - b,) 

Z= det 2 )2 2 b2 (b b,)2 z 

aS~~ ~~~ - ,1 s ,)(S-a 2 (S-a 5-b 5-b 2 

where 
[al -a, b -bb, (al -a,)2 2(al - a,)(bl -b) (bl b,) 

(4.5) 2~~I (4. 6) Z = det 0 (VI' - a, b - b (a' a, ) 2(al al)(bl bl) (h2l bl)2 

That is, we arrive at the following "quasi-interpolation" formula: 

I 1 f I ~II II .7)~~~1 r(f") =(Vt) ( ,) 2(al abl b2l)bll2 

which clearly satisfies S(p) _p for all P E U2. In other words, the approxi- 
mation order of the spline operator S(f) is 3, which is the full approximation 

1~ ~ 2 

order from the space S2 (Av). One important feature of this approximation 
formula is that it can be formulated as 

(4.8) S( f) = Zf,() Bl al) , 

where each spline function B has compact support. In fact, explicit formula- 
tions of B* can be obtained. In order to simplify the construction procedure, let 
us study the situation where two pairs of the vertices Jj/ are colinear with J/ . 
Under this assumption, we only need four - ('a 's (instead of five) in determin- 
ing Z and Z2. For example, let {J/, 2j', J7Z} and {2I, J2Z, J/Z} lie on two 
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straight lines intersecting at Vi, as shown in Figure 8. Of course, there are pos- 
sibly other neighboring vertices, which will be ignored. Recall that Vi = (ai, bd) 
and VJ/ = (a , b>), i = 1, ..., 4. Hence, there are two nonzero constants h 
and k such that 

(b- I= 1, 3, bl -b = (a-a1), /=2,4, 

where hk 1. 

V4i ,' VJ V33'j1 V.~~~~~~~~~~V 

VY V~t 

2 4 2 4 

Vk J/ / V 
" ' V ' V1 \ Vk V, 

FIGURE 8 

In order to solve for Z2i and Z in (4.3), we only require the following four 
equations: 

IZi+ ZI + WI(b' - bi) = [f(Vi) - f(V)](b - bi), 

_-Z + Z + WIV(b3 - bi) = [f(VJ') - f(Vi]l(b - bi) 
(4.9). 1 i l 

Z1 + TZ2 
+ W2(a2 - ai) = [f(v'2) - 

f(JQ]/(a2 
- aj) 

ZI + k 12 + W2(a4 -ad = [f(V4) - f(J/)]/(a4 - a1), 

where 
W1 =ah +2bh 1 +c, W2 =a+2bk 1 +ck 2 

From (4.9), we now have 

h-(bl - b1 )Z1 + (bl - b1 )Z1 
h _ _ _ _ 1 

- b3-b1[f()f(1)] - - b (b 3\*7 1 

(a' - a2)LZ1 + (a4 -a )Z 

- 

a4af(V~I)f(Vi)] 2aI[f(V~I)f(Vi)], 
- a1 k ' 

and ZP and Z2 are given by 

(4.10 1 [ VW (f(Jj) - - (f(V3) - f(V,)) (b3 -b) 1 
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(4. 1) Z' 1det Ib 3, 
2 ? a (a4-a) a,-a (f(V1)-f( aa))- 1 a(f(VfV)-f(J/)) 4)a2 - a, f(V))a4'?2 - a(f4 f(VK)) 

where 

?=0 -1 (a4 -a2)( 3 -b ) . 

Substituting Z and Z2 into (4.7), we obtain the corresponding "quasi- 
interpolation" formula which preserves all quadratic polynomials. Again, (4.7) 
can be written in the form of (4.8). 

As an example, we will describe the procedure for constructing a quasi- 
interpolation formula of the form (4.8) for the triangulation A which is a 
(not necessarily uniform) type-i triangulation A(') To be more specific, let MN 
Q = [a, b] x [c, d], and 

a=xl <-..<xM=b, C=lY < <YN=d. 

The triangulation AQ1A is obtained by inserting all diagonals with positive 
slopes to the subrectangles [xi, xi+I] x [yJ Yj+ ]. Set Vij = (xi', yj) ij 
f(xi Yj)I i = 1,..., M, j = 1, ..., N1. If Vij is an interiorvertex, then the 

IiJ 
corresponding interpolation nodes / , / = 1, 2, 3, 4, are V V I, V ,j 
VI J+1 V- 1 j . From (4.10) and (4.1 1), we have 

YJ+1 - j J+lj - YJil fJ - fY1, 
(4.12) - 

+ 
_ _ _ _ - 

are J 1, V j, 1 and Vj. And from (4.10) and (4.11),wehave 
414 z~~yi f~-fl fy-y f~-f l 

X3-X1X3-x2 x2-x1 

(415 zl _ i,j+l -ij 1j+I - i, j- I+ i,J - ti,j-I 
J+I~ ~ ~~ 

Yj+ - yj Y+- YJ -Y-yj1 

If V.j lies on the edge x = x = b, 2 < j < N- ? n-1, then VII , 2 

1 2 ,3 4 are VMjV,' VMl ,ja VM3JAl, and VM_2 j, and from (4.10) and 
(4.1 1), we have 

(4.16) Z 
I j -fj 

- 
f+j 

A j - 
_ J+i- , j - f 

-1 3 2XM -XM2 - -X 2 

(4.17) z 
I 1'M,j?+l -fM _ fM, J?+ -fM, j-1 + fMj -fM,1j- z2 I _ j+I- j- I yj-1 



186 C. K. CHUI AND T.-X. HE 

If V liesontheedge y =y1 = c, 2 < i < M-1, then VI ,I = 1, 2, 3, 4, Ii 
are j?2, VJ1-1, J/3, and VJ+/ 1, andfrom (4.10) and (4.11),wehave 

(4.18) z +;i- 
Xi~ Xl X ~lXi X -Xl 

(4.19) 2 - + 
Y3 - Y1 Y3 - Y2 Y2 - YI 

iN If Vij lies on the edge Y YN = d, 2 < i < M- I, then VI,= 
1, 2,3, 4, are VIN-1 ' Y-lN' VN-2' and V and from (4.10) and 
(4.11), we have 

(4.20) ziN - fi+lN iN fi+,N 1-1,N + IN I-I N 
I 

X -l Xl Xl~ - Xi X -X 

(4.21) Z1N ,N fN-1 ,N-1 fiN-2 + ,N fN-2 

YN YN-1 YN-1 YN-2 YN YN-2 

For VI I, the corresponding l =1,.. ., 4, are V12, V21, V13, V31, and 
from (4.10) and (4.11), we have 

(4.22) z1= 31 Al - A l - f + 
1 

X3-xi X3-X X -X 

(4.23) Z11 I = 3 - 3I _ f13 - f12 + f'12 
- I1 

2 -Y3-Y1 Y3-Y2 Y2- 

For VIN ,the corresponding I<N = 1,..., 4,are VI N-1' V2>N V, N-2 

V3 Nand from (4.10) and (4.11), we have 

(4.24) z IN 
_ f3,N-f1,N f3,N-f2,N + f2,N f1,N 

X3-x1 X3-X2 X X 

(4.25) zlN f1,N fiN-I fl,N1-f1 fl,N-2 + fN NflN-2 

YN YN-1 YN-1 YN-2 YN YN-2 

For VMI, the corresponding VM1I I = 1, .. ., 4, are VM 2 VM-I, I VM 3, 

VM-2, 1 and from (4.10) and (4.11), we have 

(4.26) z Ml 
-MI -1 fM-i 1 fM1,I - fM-2,1 + fMI -fM-2,1 

XM -XMi X -XM2 XM -XM2 

(4.27) z~l tfM,3 fM,l fM,3-fM,2 + fM,2-fM,1 

Y3-Y1 Y3-Y2 Y2-YI 

For VMN, the corresponding V , I = 1, ...,4, are VM N- I' VM-1 N' 

VM N-2 ' VM-2 N. and from (4.10) and (4.11), we have 

(4.28) ZJN fM,N fM-1,N fM-i,N fM-2,N fMN fM-2,N 

XM -XMi X -X 2 XM -XM2 
M M, tM,-1 tM,-1 tM,-2 tM, tM,-2 

(4.2 9) ZMN-fMN-f___ 
1 

fM=N--fMN-2 +fMN-fMN2 
YN YN-I YN-1 YN-2 YN YN-2 
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Hence, a "quasi-interpolation" formula in S2 (AM'1N) which preserves all qua- 
dratic polynomials is given by 

M N 

(4.30) S(f) = E Zfij S; + Z + 
1=1 J=1 

where Zlj and 1J are the values in (4.12)-(4.29). We may rewrite (4.30) in 
the form (4.8); that is, 

(4.31) S(f) = E fij 
Ii 

where B* are the new basic functions. Hence, the approximation formula 
Ii 

(4.31), which requires only function values at the vertices J/j, provides third- 
order approximation. The construction of B*. can be accomplished by using 

Ii 

(4.12)-(4.29) in (4.30), and their explicit expressions are given in our report 
[2]. 
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